Formation MLOps
Découvrez notre formation MLOps, conçue pour les professionnels de l'IT. Avec un accent sur l'application pratique, cette formation permettra aux participants de s'approprier les meilleures pratiques MLOps, des techniques de compression au déploiement en production. Ils apprendront à évaluer, tester et déployer efficacement des modèles ML, tout en maîtrisant les outils et pratiques essentiels. Rejoignez-nous pour transformer vos compétences en MLOps et rester à la pointe de l'industrie IT !
Prérequis
Public admis
- Salarié en Poste
- Entreprise
Demandeur d'emploi et Etudiant non admis
Financement
- Votre OPCO
- Financement personnel
Financement CPF non pris en charge
Modalités
- En centre
- En entreprise
- À distance
Objectifs pédagogiques
- Définir les concepts clés de MLOps
- Maîtriser l'ingénierie en Machine Learning
- Appliquer des techniques de compression des modèles
- Analyser et corriger les erreurs des modèles
- Déployer et mettre à l'échelle des modèles ML
Programme de la formation
Introduction à la formation MLOps
Définition et objectifs de MLOps
Les défis du développement et de l’exploitation des modèles de machine learning
L’importance de MLOps dans l’industrie
Le cycle de vie DevOps pour les modèles de machine learning
Ingénierie en Machine Learning
Création de pipelines reproductibles
Utilisation d’un registre de modèles
Utilité des métadonnées et les moyens de les gérer facilement
Concept de CI/CD adapté au Machine Learning
Techniques de compression
Enjeux de la compression : déploiement sur terminal léger et gains d’efficience
Utilisation de LoRA pour apprendre des modèles de langue affinés
Quantization & pruning pour réduire la taille des modèles
Analyse d’erreur
L’analyse par tranches de données
Explicabilité des modèles avec LIME & SHAP
Mesurer et contrer la dérive des données et des concepts en production
Déploiement et passage à l’échelle
La création d’API avec Python Flask
La déploiement avec Flask, TensorFlow Lite, TensorFlow Serving
Dockerisation d’une API
Présentation du déploiement avec Kubernetes & KubeFlow
Schémas de déploiement
Notions d’architecture big data
Proposé par
Sparks
"Tout l'IT, vraiment tout"
Proposé par
Sparks