Formation Deep Learning avec TensorFlow
Le Deep Learning est un des domaines informatiques les plus prometteurs de l'ère du Big Data et de la Data Science. Le concept de Deep Learning, ou d'apprentissage profond, repose sur les réseaux de neurones artificiels. A l'instar des réseaux de neurones qui forment notre cerveau, les réseaux de neurones artificiels ont pour but l'apprentissage machine. Dans la catégorie des outils de Deep Learning, TensorFlow est l'un des plus connus. Réservez dès maintenant votre formation TensorFlow pour maîtriser l'outil Deep Learning de Google. Cette formation Deep Learning est disponible en distanciel ou sur place.
Prérequis
Public admis
- Salarié en Poste
- Entreprise
Demandeur d'emploi et Etudiant non admis
Financement
- Votre OPCO
- Financement personnel
Financement CPF non pris en charge
Modalités
- En centre
- En entreprise
- À distance
Objectifs pédagogiques
- Connaître l'historique de l'apprentissage learning et ses enjeux
- Pouvoir installer et configurer TensorFlow
- Gérer les Réseaux Neuronaux Artificiels et leur optimisation
- Maîtriser les Réseaux de Neurones Convolutifs (CNN) et Récurrents (RNN)
- Manier Autoencoders et Restricted Boltzmann Machine
- Connaître le Reinforcement Learning, savoir l'utiliser
- Exécuter le Deep Learning sur CPU et GPU, concepts avancés
Programme de la formation
Présentation de la formation Deep Learning
Tour d’horizon du Machine Learning
Principes fondamentaux
Du Machine Learning au Deep Learning
Le retour sous le feu des projecteurs du Deep Learning
Champs d’application de l’apprentissage profond
Utilisation du Deep Learning
Outils et bibliothèques Deep Learning: TensorFlow, Keras, Caffe, etc.
Notions mathématiques essentielles
Les vecteurs
Les matrices
Les hyperplans
Introduction à TensorFlow
Apprendre TensorFlow et son installation
Environnement TensorFlow
Présentation des tensors (tableaux multidimensionnels)
Hello World
Opérations élémentaires
Variables, placeholders
TensorBoard: Visualisation de graphes, de courbes
TensorFlow: Régression et classification
Les APIs: Estimators, Layers, Datasets…
Obtention d’ensembles de données, manipulation
Sauvegarde de modèles, restauration
Travaux pratiques possibles : Créer son modèle de régression avec TensorFlow, Visualiser des données avec TensorBoard
Les réseaux neuronaux artificiels (ANN)
Réseaux de neurones biologiques et artificiels, similarités
Perceptron mono, multicouche
Fonctionnement et architecture des neurones
Réglage de paramètres
Développement d’un réseau
Les fonctions d’activation des réseaux: Sigmoid, Tanh, ReLU
Modélisation d’un réseau selon le problème à résoudre
Travaux pratiques possibles : Construire son premier réseau neuronal multicouche et le classifier…
Optimisation d’un réseau neuronal, entraînement
Définition d’un rythme d’apprentissage
Fonctions de coût, descente de gradient et rétropropagation
Sélection de features
Data Augmentation
Régularisation pour le surapprentissage (arrêt délibéré, normes L1 et L2)
Batch normalization
Validation croisée et hyperparamètres
Optimisation des modèles, comparaisons
Transfer Learning : utilisation de couches pré-entraînées
Travaux pratiques possibles : Entraînement d’un réseau neuronal profond, test et optimisation
Les réseaux de neurones convolutifs (CNN)
Fonctionnement du CNN, utilisation
Filtres, couches de convolution et de pooling
Architecture d’un CNN
Travaux pratiques possibles : Implémenter un réseau convolutif pour reconnaître l’écriture manuscrite de manière automatique. (A l’aide de la de chiffres manuscrits)
Réseaux de neurones récurrents (RNN)
La disparition du gradient, les effets
RNN: Architecture
Cellule Long Short-Term Memory (LSTM)
Cellule GRU, version simplifiée de la cellule LSTM
Natural Language Processing
Réseaux de neurones récursifs
Travaux pratiques possibles : Implémenter un réseau neuronal récurrent pour traiter le langage naturel automatiquement.
Autoencoders et Restricted Boltzmann Machine
Apprentissage non-supervisé
La machine de Boltzmann restreinte (RBM)
Deep Belief Networks
Réduction de dimension à l’aide d’autoencoders
Types d’autoencoders
Travaux pratiques possibles : Utilisation d’un autoencoder pour la réduction de dimension
Reinforcement learning (apprentissage par renforcement)
Principes, utilisation
Optimiser les récompenses
Présentation d’OpenAI Gym
Configurer OpenAI Gym
Le problème du credit-assignment
Processus de décision markoviens
Apprentissage par différence temporelle
Apprentissage Q
Notions avancées
Exécution sur CPUs, GPUs ou cluster
TensorServing: outil de mise en production
Visualisation avancée
Les limites
Implémenter le Deep Learning avec TensorFlow sur une application d’entreprise
Ressources additionnelles

Proposé par
Sparks
"Tout l'IT, vraiment tout"

Proposé par
Sparks
