J'ai un diplôme "Expert en ingénierie de l'intelligence artificielle"

Je sais faire les actions suivantes :

Les activités professionnelles de l’expert en ingénierie de l’intelligence artificielle se répartissent en quatre grands champs d’activités : * La mesure de l’apport de l’intelligence artificielle dans la stratégie du système d’information de l’entreprise. * L’élaboration et la mise en production des modèles et algorithmes d’analyse, de gestion et de traitement de la donnée. * La conception et le pilotage d’une infrastructure d’acquisition, de stockage, de traitement et de restitution de donnée. * La conduite de l’ingénierie de projet d’intelligence artificielle.

OÙ SUIVRE CETTE CERTIFICATION ?

Détails du diplôme

Quelles sont les compétences que vous allez apprendre mais aussi comment l'examen va-t-il se passer ?

Compétences attestées :

Auditer les pratiques d’utilisation de la donnée et de l’intelligence artificielle au sein de l’entreprise pour définir une stratégie d’intégration de l’intelligence artificielle permettant d’augmenter la performance du système informatique de l’entreprise. Réaliser un benchmark des avancées technologiques et scientifiques en intelligence artificielle et big data, en France comme à l’étranger, via une veille scientifique et technique pour apporter de la valeur ajoutée au SI de l’entreprise et être réactif sur le marché. Proposer des évolutions en réponse à l’audit en les argumentant au travers de prototypes ou simulations afin de sélectionner une solution en lien avec les systèmes informatiques existants, la réglementation en vigueur, le budget alloué, le temps imparti, la stratégie générale et la politique RSE de l’entreprise. Rédiger un cahier des charges intégrant les spécifications techniques et anticipant les contraintes technologiques, financières et de sécurité pour cadrer les évolutions de l’architecture du système informatique. Modéliser les processus cognitifs à partir de traitement d’image, de texte et de l’analyse d’expériences passées pour préparer et normaliser les données structurées et non structurées. Prototyper et tester des algorithmes de prédiction en suivant leur performance et le traitement de la donnée afin de modéliser les comportements et extraire de nouveaux usages. Programmer des algorithmes via l’apprentissage fédéré sur des périphériques ou serveurs décentralisés pour créer un modèle permettant la restitution de données sur une plateforme d’utilisation limitant l’utilisation d’énergie. Analyser et traiter les résultats des modèles et algorithmes implantés pour les restituer aux parties prenantes et en ressortir des axes d’amélioration. Analyser l’infrastructure de l’entreprise en dressant un état des lieux du matériel et des logiciels pour définir la stratégie d’infrastructure nécessaire eu égard de la stratégie globale, de la politique RSE et du budget alloué par l’entreprise. Identifier et comparer des plateformes de stockage des données pour sélectionner la plus accessible et adaptée à la stratégie d’infrastructure de l’entreprise et respectant les normes et la réglementation en vigueur. Installer l’infrastructure en accompagnant les différentes parties prenantes à l’organisation afin d’assurer une mise en service optimale. Déployer l’infrastructure dans une solution de cloud après sélection du fournisseur afin de réduire les investissements d’infrastructure de l’entreprise. Constituer un échantillon de données utilisables par tous les systèmes de stockage afin d’assurer leur traitement. Restituer un ensemble de données à travers un rapport d'activités afin de faire état et présenter les résultats à l’entreprise. Déployer une stratégie de mise en conformité des traitements sur les données pour les récolter et les structurer dans le respect des règles éthiques, juridiques et réglementaires. Réaliser des simulations et traitement de données grâce au deep learning et machine learning pour adapter les systèmes d’informations existants. Contrôler les évolutions du système informatique afin d’ajuster la conception, la mise en production et le pilotage des futurs projets et solutions d’intelligence artificielle. Superviser les parties prenantes lors de la mise en production de l’IA en veillant à l’exploitation technique et fonctionnelle et à la gestion des flux de données en temps réel, en tenant compte de l’impact écologique pour accompagner le changement dans le respect du cahier des charges, de la réglementation en vigueur, du temps et du budget impartis. Piloter le déroulement du projet d’intelligence artificielle en assurant le suivi, l’analyse des résultats, la formation et l’accompagnement des collaborateurs de façon inclusive pour assurer le déploiement et la conformité du projet. Rédiger une documentation associée au projet d’intelligence artificielle tenant compte des règles d’accessibilité et du RGPD pour faciliter son utilisation, sa maintenance et son évolution dans le système informatique existant. Analyser l’ingénierie d’intelligence artificielle déployée, la rentabilité de la solution d’intelligence artificielle, son accessibilité et l’impact écologique d’après des indicateurs de suivi de la performance pour mettre en place des actions correctives le cas échéant, afin d’accroitre la performance de l’entreprise.

Voies d'accès à la certification :

Voies d'accès Composition des Jurys
Après un parcours de formation sous statut d’élève ou d’étudiant
Autorisé
Le jury de la délivrance de la certification est composé a minima de 60% professionnels du secteur dont l'un est président du jury.
En contrat d’apprentissage
Autorisé
Le jury de la délivrance de la certification est composé a minima de 60% professionnels du secteur dont l'un est président du jury.
Après un parcours de formation continue
Autorisé
Le jury de la délivrance de la certification est composé a minima de 60% professionnels du secteur dont l'un est président du jury.
En contrat de professionnalisation
Autorisé
Le jury de la délivrance de la certification est composé a minima de 60% professionnels du secteur dont l'un est président du jury.
Par candidature individuelle
Non autorisé
Par expérience
Autorisé
Le jury de la délivrance de la certification est composé a minima de 60% professionnels du secteur dont l'un est président du jury.

Segmentation de la certification

Cette certification se compose de 4 Blocs de compétences

Les modalités d'acquisition de la certification par capitalisation des blocs de compétences et/ou par équivalence sont définies par chaque certificateur accrédité qui met en œuvre les dispositifs qu’il juge adaptés. Ces modalités peuvent être modulées en fonction du chemin d’accès à la certification : formation initiale, VAE, formation continue.

RNCP38587BC01 - Mesurer l’apport de l’intelligence artificielle dans la stratégie du système d’information de l’entreprise

    Auditer les pratiques d’utilisation de la donnée et de l’intelligence artificielle au sein de l’entreprise pour définir une stratégie d’intégration de l’intelligence artificielle permettant d’augmenter la performance du système informatique de l’entreprise. Réaliser un benchmark des avancées technologiques et scientifiques en intelligence artificielle et big data, en France comme à l’étranger, via une veille scientifique et technique pour apporter de la valeur ajoutée au SI de l’entreprise et être réactif sur le marché. Proposer des évolutions en réponse à l’audit en les argumentant au travers de prototypes ou simulations afin de sélectionner une solution en lien avec les systèmes informatiques existants, la réglementation en vigueur, le budget alloué, le temps imparti, la stratégie générale et la politique RSE de l’entreprise. Rédiger un cahier des charges intégrant les spécifications techniques et anticipant les contraintes technologiques, financières et de sécurité pour cadrer les évolutions de l’architecture du système informatique.

RNCP38587BC02 - Elaborer et mettre en production des modèles et algorithmes d’analyse, de gestion et de traitement de la donnée

    Modéliser les processus cognitifs à partir de traitement d’image, de texte et de l’analyse d’expériences passées pour préparer et normaliser les données structurées et non structurées. Prototyper et tester des algorithmes de prédiction en suivant leur performance et le traitement de la donnée afin de modéliser les comportements et extraire de nouveaux usages. Programmer des algorithmes via l’apprentissage fédéré sur des périphériques ou serveurs décentralisés pour créer un modèle permettant la restitution de données sur une plateforme d’utilisation limitant l’utilisation d’énergie. Analyser et traiter les résultats des modèles et algorithmes implantés pour les restituer aux parties prenantes et en ressortir des axes d’amélioration.

RNCP38587BC03 - Concevoir et piloter une infrastructure d’acquisition, de stockage, de traitement et de restitution de données

    Analyser l’infrastructure de l’entreprise en dressant un état des lieux du matériel et des logiciels pour définir la stratégie d’infrastructure nécessaire eu égard de la stratégie globale, de la politique RSE et du budget alloué par l’entreprise. Identifier et comparer des plateformes de stockage des données (solutions en déploiement local ou cloud) pour sélectionner la plus accessible et adaptée à la stratégie d’infrastructure de l’entreprise et respectant les normes et la réglementation en vigueur. Installer l’infrastructure en accompagnant les différentes parties prenantes à l’organisation afin d’assurer une mise en service optimale. Déployer l’infrastructure dans une solution de cloud après sélection du fournisseur afin de réduire les investissements d’infrastructure de l’entreprise. Constituer un échantillon de données utilisables par tous les systèmes de stockage afin d’assurer leur traitement. Restituer un ensemble de données à travers un rapport d'activités afin de faire état et présenter les résultats à l’entreprise.

RNCP38587BC04 - Piloter un projet d’intelligence artificielle

    Déployer une stratégie de mise en conformité des traitements sur les données pour les récolter et les structurer dans le respect des règles éthiques, juridiques et réglementaires. Réaliser des simulations et traitement de données grâce au deep learning et machine learning pour adapter les systèmes d’informations existants. Contrôler les évolutions du système informatique afin d’ajuster la conception, la mise en production et le pilotage des futurs projets et solutions d’intelligence artificielle. Superviser les parties prenantes lors de la mise en production de l’IA en veillant à l’exploitation technique et fonctionnelle et à la gestion des flux de données en temps réel, en tenant compte de l’impact écologique pour accompagner le changement dans le respect du cahier des charges, de la réglementation en vigueur, du temps et du budget impartis. Piloter le déroulement du projet d’intelligence artificielle en assurant le suivi, l’analyse des résultats, la formation et l’accompagnement des collaborateurs de façon inclusive pour assurer le déploiement et la conformité du projet. Rédiger une documentation associée au projet d’intelligence artificielle tenant compte des règles d’accessibilité et du RGPD pour faciliter son utilisation, sa maintenance et son évolution dans le système informatique existant. Analyser l’ingénierie d’intelligence artificielle déployée, la rentabilité de la solution d’intelligence artificielle, son accessibilité et l’impact écologique d’après des indicateurs de suivi de la performance pour mettre en place des actions correctives le cas échéant, afin d’accroitre la performance de l’entreprise.

Je cherche à faire...